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Abstract

Recurrent bivariate fractal interpolation surfaces (RBFISs) generalise the notion of affine fractal inter-
polation surfaces (FISs) in that the iterated system of transformations used to construct such a surface is
non-affine. The resulting limit surface is therefore no longer self-affine nor self-similar. Exact values for
the box-counting dimension of the RBFISs are obtained. Finally, a methodology to approximate any natural
surface using RBFISs is outlined.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fractal theory has been drawing considerable attention of researchers in various scientific
areas. The application of fractals created by iterated function systems (IFSs) in the area of image
compression is probably the most known one. Applications of fractal surfaces have been also
found in computer graphics, metallurgy, geology, chemistry, medical sciences and several other
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areas where there is great need to construct extremely complicated objects; see for example
[12,20,18,16].

Mazel and Hayes (see [15,14,19]) used fractal interpolation functions (FIFs) (introduced by
Barnsley [1]) to approximate discrete sequences of data (like one-dimensional signals). They
demonstrated the effectiveness of their method by modelling seismic and electrocardiogram data.
Recently, Navascues and Sebastian (in [17]) gave a generalisation of Hermite functions using
FIFs.

Fractal interpolation surfaces (FISs) were used to approximate surfaces of rocks, metals (see
[22]), terrains [23], planets [5] and to compress images [4]. The object of this paper is to introduce
a new, more general, class of FISs suitable to approximate any natural surface.

Self-affine FISs were first introduced in [13] in the case where the domains are triangular and
the interpolation points on the boundary of the domain are coplanar. A few years later Geronimo
and Hardin [8] generalised the construction of Massopust to allow for more general boundary
data and domains. Simultaneously, in Hardin and Massopust [9], Rm-valued multivariable fractal
functions were investigated. The latter two constructions use recurrent iterated function systems
(RIFSs).

Some problems in the construction by [13] remained unsolved, amongst which was the lack
of free contractivity factors, which are necessary in modelling complicated surfaces. A general
constructive method of generating affine FISs is presented in [24]. Xie and Sun [21] and Xie
et al. [22] presented a construction of a compact set that contains the interpolation points defined
on a rectangular domain. A special construction of bivariate FIS (BFIS) is given in [11]. Dalla [6]
gives some conditions in such a way that the bivariate IFS gives a FIS.

In this paper, we introduce recurrent BFISs as a generalisation of the aforementioned meth-
ods in order to gain more flexibility in natural-shape generation or in image compression. The
main advantage of this new class of FIS is that they are neither self-affine nor self-similar in
contrast to all the previously mentioned constructions. Our method is used in [4] for image re-
construction and offers the advantage of a more flexible fractal modelling compared to previous
fractal techniques (based on affine transformations). The compression ratio for the aforemen-
tioned fractal scheme (though not close enough to JPEG2000) is higher than other fractal methods
or JPEG.

2. Recurrent bivariate IFSs on rectangular grids

Any subset of R3 of the form [a, b]×[c, d]×R may easily be scaled down to [0, 1]×[0, p]×R.
Therefore, for notation purposes, we may focus on the metric space X = [0, 1] × [0, p] × R.
Let � = {(xi, yj , zij ) : i = 0, 1, . . . , N; j = 0, 1, . . . , M} be an interpolating set with
(N + 1)·(M + 1) interpolation points, such that 0 = x0 < x1 < · · · < xN = 1 and 0 = y0 <

y1 < · · · < yM = p. Furthermore let Q = {(x̂k, ŷl , ẑkl) : k = 0, 1, . . . , K; l = 0, 1, . . . , L}
be a set with (K + 1) · (L + 1) points with Q ⊂ � (Q �= �), such that 0 = x̂0 < x̂1 < · · · <

x̂K = 1 and 0 = ŷ0 < ŷ1 < · · · < ŷL = p. The interpolation points divide [0, 1] × [0, p]
into N · M rectangles Iij = [xi−1, xi] × [yj−1, yj ], i = 1, . . . , N and j = 1, . . . , M , which
we call sections (or) regions, while the points of Q divide [0, 1] × [0, p] to K · L rectangles
Jkl = [x̂k−1, x̂k]× [ŷl−1, ŷl], k = 1, . . . , K and l = 1, . . . , L which we simply call intervals (or)
domains. It is evident that for every interval Jkl there are some sections lying inside.

Define a labelling map J: {1, 2, . . . , N}×{1, 2, . . . , M} → {1, 2, . . . , K}×{1, 2, . . . , L} with
J(i, j) = (k, l), such that x̂k − x̂k−1 > xi − xi−1 and ŷl − ŷl−1 > yj − yj−1 for i = 1, 2, . . . , N ,
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j = 1, 2, . . . , M and contractive mappings wij : X → X satisfying

wij

⎛
⎝ x̂k−1

ŷl−1
ẑk−1,l−1

⎞
⎠ =

⎛
⎝ xi−1

yj−1
zi−1,j−1

⎞
⎠ , wij

⎛
⎝ x̂k

ŷl−1
ẑk,l−1

⎞
⎠ =

⎛
⎝ xi

yj−1
zi,j−1

⎞
⎠ ,

wij

⎛
⎝ x̂k−1

ŷl

ẑk−1,l

⎞
⎠ =

⎛
⎝ xi−1

yj

zi−1,j

⎞
⎠ and wij

⎛
⎝ x̂l

ŷl

ẑkl

⎞
⎠ =

⎛
⎝ xi

yj

zi,j

⎞
⎠ , (1)

for i = 1, . . . , N and j = 1, . . . , M . The wij map the vertices of the interval Jkl = JJ(i,j) to the
vertices of the section Iij . Finally, let �: {1, . . . , N} × {1, . . . , M} → {1, . . . , N · M} be a 1–1
function (i.e. an enumeration of the set {(i, j) : i = 1, . . . , N; j = 1, . . . , M}).

A recurrent iterated function system (RIFS) associated with the set of data � consists of the IFS

{X; wi,j , i = 1, 2, . . . , N; j = 1, 2, . . . , M}
(

or, somewhat more briefly, as
{
X; w1−N,1−M

})
to-

gether with a row-stochastic matrix (pnm ∈ [0, 1] : n, m ∈ {�(i, j), i = 1, . . . , N;
j = 1, . . . , M}), such that

N ·M∑
m=1

pnm = 1, n = 1, . . . , N · M. (2)

The recurrent structure is given by the connection matrix C = (Cnm), defined by

Cnm =
{

1 if pmn > 0,

0 if pmn = 0,

for n, m = 1, 2, . . . , N · M . The transition probability for a certain discrete time Markov process
is pnm, which gives the probability of transfer into state m given that the process is in state n.
Eq. (2) says that whichever state the system is in (say n), a set of probabilities is available that
sum to 1, and they describe the possible states to which the system transits at the next step.

In this paper, we study the special case where wij are transformations of the form

wij

⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ aij x + bij

cij y + dij

eij x + fij y + gij xy + sij z + kij

⎞
⎠ =

⎛
⎝ �ij (x)

�ij (y)

Fij (x, y, z)

⎞
⎠ . (3)

Define the function Tij by

Tij

(
x

y

)
=
(

aij x + bij

cij y + dij

)
=
(

�ij (x)

�ij (y)

)
, (4)

so that wij = (Tij , Fij )
t (where At denotes the transpose matrix of A). From Eq. (3) eight linear

equations arise which can always be solved for aij , bij , cij , dij , gij , eij , fij , kij in terms of the
coordinates of the interpolation points and the vertical scaling (or contractivity) factor sij (see
[6,21]). We easily find that:

aij = xi − xi−1

x̂k − x̂k−1
,

bij = x̂kxi−1 − x̂k−1xi

x̂k − x̂k−1
,
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cij = yj − yj−1

ŷl − ŷl−1
,

dij = ŷlyj−1 − ŷl−1yj

ŷl − ŷl−1
,

gij = zij + zi−1,j−1 − zi−1,j − zi,j−1 − sij
(
ẑkl + ẑk−1,l−1 − ẑk−1,l − ẑk,l−1

)
(
ŷl − ŷl−1

) (
x̂k − x̂k−1

) ,

eij = zi−1,j−1 − zi,j−1 − sij
(
ẑk−1,l−1 − ẑk,l−1

)− gij ŷl−1
(
x̂k−1 − x̂k

)
x̂k−1 − x̂k

,

fij = zi−1,j−1 − zi,j−1 − sij
(
ẑk−1,l−1 − ẑk−1,l

)− gij x̂l−1
(
ŷk−1 − ŷk

)
ŷk−1 − ŷk

,

kij = zij − eij x̂k − fij ŷl − sij ẑkl − gij x̂kŷl , (5)

If the vertical scaling factors obey |sij | < 1, then there is a metric d on X equivalent to the
Euclidean metric, such that wij is a contraction with respect to d (i.e. ∃ŝij : 0� ŝij < 1 :
d(wij (x̄), wij (ȳ))� ŝij d(x̄, ȳ), ∀x̄, ȳ ∈ X). One such metric d is given by (see [6]):

d ((x1, y1, z1) , (x2, y2, z2)) = |x1 − x2| + |y1 − y2| + � |z1 − z2| ,
where

� = min

{
mini,j {1 − aij }

maxi,j {2(|eij | + p|gij |)} ,
mini,j {1 − cij }

maxi,j {2(|fij | + |gij |)}
}

.

The corresponding RIFS is called recurrent bivariate IFS (RBIFS).
It has been proved in [3] that there is a fixed point (attractor) A of this RBIFS. In this case, we

can easily see that

Tij (JJ(i,j)) = Iij , i = 1, . . . , N, j = 1, . . . , M.

We also assume that pN, pK ∈ N, the sections (defined by the interpolation points) are squares
of side � = 1/N , while the intervals are squares of side � = 1/K (thus M = pN , L = pK) and
the number

a = �

�
= N

K

is an integer greater than one. The number a2 expresses how many sections lie inside any interval.
If we define the enumeration �(i, j) = (i − 1)M + j, i = 1, . . . , N and j = 1, . . . , M , then

�−1(n) = ((n − 1) div M + 1, (n − 1) mod M + 1), n = 1, . . . , N · M and the NM × NM

stochastic matrix (pnm) is defined by

pnm =
{ 1

qn
if I�−1(n)

⊆ JJ(�−1(m))
,

0 otherwise,

where qn is the number of non-zero elements of the nth row of the stochastic matrix (pnm).
This means that pnm is positive iff there is a transformation Tij , which maps an interval
containing the nth section (i.e. I�−1(n)

= I(n−1) div M+1,(n−1) mod M+1) to the mth section
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(i.e. I(m−1) div M+1,(m−1) mod M+1). Let us take a point in Iij × R, i = 1, . . . , N, j = 1, . . . , M .
We say that we are in state n, if n = �(i, j). The matrix (pnm) shows the probability of apply-
ing the map w�−1(m)

to that point, so that the system transits to state m. Finally, we define the

enumeration �̂(k, l) = (k − 1)K + l, k = 1, . . . , K , l = 1, . . . , L and the connection vector
Cv = {cv

1, c
v
2, . . . , c

v
NM} as follows:

cv
n = �̂(J(�−1(n))), n = 1, 2, . . . , NM.

If the attractor A of the above RBIFS is the graph of a continuous function, then it is called a
recurrent bivariate fractal interpolation surface (RBFIS). In the next section, we compute its
box-counting dimension.

3. The box-counting dimension of RBFIS

Let B be any non-empty compact subset of R3 and let N (B, ε) be the smallest number of
(closed) balls of radius ε that cover B. Let

D = D(B) = lim inf
ε>0

log N (B, ε)

log(1/ε)
and D = D(B) = lim sup

ε>0

log N (B, ε)

log(1/ε)

be the lower and upper box-counting dimension of B, respectively; if

D = D(B) = lim
ε→0

log N (B, ε)

log(1/ε)

exists, then D is called the box-counting dimension of B (see [2]).
In the latter case, we will use the notation D = D(B) = D(B) = D(B) and will say “B has

box-counting dimension D”. In practice, we usually use covers of closed cubes of side length
(1/kn), where k ∈ N. If Nn(B) denotes the number of cubes of side 1/kn that intersect B and

D = lim
n→∞

log Nn(B)

log kn

exists then B has box-counting dimension D. To compute D(B) we usually use covers that differ
from those above. Assume that one uses covers from the set {Cε : ε > 0}, which is formed by
sets of radius ε and let N ∗(ε) be the minimum number of sets in Cε that cover B. If we can find
constant numbers c1 and c2, such that c1N (B, ε)�N ∗(ε)�c2N (B, ε), then N ∗(ε) can replace
N (B, ε) in the calculation of D(B) (the proof is straightforward).

We will compute the box-counting dimension of the attractor A of the bivariate RIFS on R3

defined above, in the case that A is the graph of a continuous function. The following definition
gives the cover we use to compute the box-counting dimension of this attractor.

Definition 1. Let r > 0 and

C =
{[

k − 1

ar
,

k

ar

]
×
[
l − 1

ar
,

l

ar

]
×
[
b, b + 1

ar

]
: k, l, r ∈ N, b ∈ R

}
,
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where C contains overlapping 1/ar -mesh cubes. We define,

N ∗(r) as the minimum number of cubes in C necessary to cover A and

N (r) as the smallest number of
1

ar
-mesh cubes which cover A.

We may easily deduce the following.

Lemma 1. N (r)�N ∗(r)�4N (r).

Definition 2. The maximum range of a function h inside the rectangle I ⊂ R2 is defined by

Rh[I ] = max{|h(x1, y1) − h(x2, y2)| : (x1, y1), (x2, y2) ∈ I }.

Lemma 2. Let the RBIFS be as defined above and suppose that its attractor A is the graph of
a continuous function h defined on I = [�, �] × [�, �] ⊆ R2, �, ��0. Also, let w be one of the
maps that define the RBIFS with the form

w

⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ ax + b

cy + d

ex + fy + gxy + sz + k

⎞
⎠ =

⎛
⎝ �(x)

�(y)

F (x, y, z)

⎞
⎠ (6)

with

T

(
x

y

)
=
(

ax + b

cy + d

)
=
(

�(x)

�(y)

)
. (7)

Then

Rh[T (I)]� |e|(� − �) + |f |(� − �) + |g|�(� − �) + |g|�(� − �) + |s|Rh[I ].

Proof. Let (x1, y1, z1)
t , (x2, y2, z2)

t ∈ A and

(x′
1, y

′
1, z

′
1)

t = w((x1, y1, z1)
t),

(x′
2, y

′
2, z

′
2)

t = w((x2, y2, z2)
t).

Then we have

|z′
2 − z′

1| � |e||x2 − x1| + |f ||y2 − y1| + |g||x2y2 − x1y1| + |s||z2 − z1|
= |e||x2 − x1| + |f ||y2 − y1| + |g||x2y2 − x2y1 + x2y1 − x1y1| + |s||z2 − z1|
� |e||x2 − x1| + |f ||y2 − y1| + |g||y1||x2 − x1| + |g||x2||y2 − y1| + |s||z2 − z1|
� |e|(� − �) + |f |(� − �) + |g|�(� − �) + |g|�(� − �) + |s||z2 − z1|.

So, we have the result. �

Define [·]: R → Z to be the greatest integer function.

Lemma 3. Let x, x1, x2, . . . , xk ∈ R be such that x1 + x2 + · · · + xk = �x. Then the following
inequalities hold:

�x − k�[x1] + [x2] + · · · + [xk]��x.
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Definition 3. Let U, V ∈ RN with U = (u1, u2, . . . , uN) and V = (v1, v2, . . . , vN). Define the
relation ≺ as follows:

U ≺ V iff ui < vi, i = 1, 2, . . . , N.

Definition 4. Let P = {(xi, yj , zij ); i = 1, 2 . . . , N; j = 1, 2, . . . , M} be a set of points in R3.
We call the points of P x-collinear iff all the points with the same x coordinate are collinear. We
call the points of P y-collinear iff all the points with the same y coordinate are collinear.

Theorem 1. Let the above RBIFS be defined by an irreducible connection matrix C. Let S be the
N · M × N · M diagonal matrix

S = diag(|s�−1(1)
|, |s�−1(2)

|, . . . , |s�−1(NM)
|),

with 0 < |sij | < 1, i = 1, . . . , N and j = 1, . . . , M . Suppose that the attractor A of the RBIFS
is the graph of a continuous function f that interpolates � and that the interpolation points of
every interval are not x-collinear or not y-collinear. Then, the box-counting dimension of A is
given by

D(A) =
{

1 + loga � if � > a,

2 if ��a,

where � = 	(SC) > 0, the spectral radius of the irreducible matrix S · C.

Proof. Let Rkl = Rf [Jkl] denote the maximum range of f inside the interval Jkl . The connection
matrix C = (Cnm) of the RBIFS we mentioned earlier is defined by Cnm = 1, if pmn > 0, 0
otherwise. If U = (u1, u2, . . . , uNM)t ∈ RNM , we define

�(U) = u1 + u2 + · · · + uNM.

According to the hypothesis, we may assume that, for every interval Jkl , there is a number i0
such that the points {(xi0 , yj
 , zi0,j
) : (xi0 , yj
) ∈ Jkl, 
 = 1, 2, . . . , a + 1} are not collinear or
there is a number j0 such that the points {(xi
 , yj0 , zi
,j0) : (xi
 , yj0) ∈ Jkl, 
 = 1, 2, . . . , a + 1}
are not collinear. Assume all points are not collinear with each other in that sense and let Vkl

denote their maximum vertical distance from the line defined by the endpoints (xi0 , yj1 , zi0,j1)

and (xi0 , yja+1 , zi0,ja+1) in the first case or by (xi1 , yj0 , zi1,j0) and (xia+1 , yj0 , zia+1,j0) for the
second case. By the term vertical distance we mean a distance that is computed only with respect
to the z-axis. We will refer to the vertical distance as “height”.

After the first iteration (after applying each wij to the interpolation points lying inside interval
JJ(i,j)) we obtain (a +1)2 new points and one height |sij |VJ(i,j) inside every section. To compute
the height we use the property of bivariate functions that each vertical line (parallel to zź) is
mapped to a vertical line scaled by the vertical scaling factor, along with the property that a
bivariate function maps any line parallel to the xz plane (or to the yz plane) to a line also parallel
to the xz plane or to yz plane, respectively. Recall that I = [0, 1] × [0, p]. From Lemma 2, we
find that the maximum range inside each section will be

Rf [Iij ]��ij

a

N
+ |sij |Rf [JJ(i,j)],

where �ij = |eij | + |fij | + |gij | + |gij |p, i = 1, . . . , N, j = 1, . . . , M.
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Define non-negative vectors B, H1, R, U1 and I, by

B =

⎛
⎜⎜⎜⎝

��−1(1)

��−1(2)
...

��−1(NM)

⎞
⎟⎟⎟⎠ , H1 =

⎛
⎜⎜⎜⎝

|s�−1(1)
|VJ◦�−1(1)

|s�−1(2)
|VJ◦�−1(2)
...

|s�−1(NM)
|VJ◦�−1(NM)

⎞
⎟⎟⎟⎠ ,

R =

⎛
⎜⎜⎜⎝

|s�−1(1)
|RJ◦�−1(1)

|s�−1(2)
|RJ◦�−1(2)
...

|s�−1(NM)
|RJ◦�−1(NM)

⎞
⎟⎟⎟⎠ ,

U1 = a

N
B + R and I = (1, 1, . . . , 1)t .

Since A is the graph of a continuous function defined on [0, 1] × [0, p], in order to cover the part
of A lying inside Iij × R we need more cubes than those needed to cover the height |sij |VJ(i,j)

and less cubes than those needed to cover the parallelipiped Iij × [zmax[i, j ], zmin[i, j ]], where
zmax[i, j ], zmin[i, j ] denote the maximum and minimum values of f inside section Iij . Therefore,

N∑
i=1

M∑
j=1

[|sij |VJ(i,j)a
r
]
�N ∗(r)

�
N∑

i=1

M∑
j=1

([(
�ij

a

N
+ |sij |RJ(i,j)

)
ar
]

+ 1
)([ 1

N
ar

]
+ 1

)2

.

Hence (from Lemma 3) we have:
N∑

i=1

M∑
j=1

(|sij |VJ(i,j)a
r
)− NM �N ∗(r)

�
N∑

i=1

M∑
j=1

((
�ij

a

N
+ |sij |RJ(i,j)

)
ar + 1

)([ 1

N
ar

]
+ 1

)2

or

�(H1a
r) − NM �N ∗(r)��

(
U1 · ar + I

) ·
([

1

N
ar

]
+ 1

)2

.

After the second iteration we obtain a2 squares of side 1
aN

which we call sectors. Each sector is
produced from each section lying inside the interval that is mapped to the original section. The
maximum ranges produced inside each sector are contained (as coordinates) in the vector

U2 = SC · U1 + a2B
1

N

while the heights produced inside each sector (a2 for each section) are contained (as coordinates)
in the vector

H2 = SC · H1.
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Thus,

�
(
H2 · ar

)− a2MN �N ∗(r)��
(
U2 · ar + a2I

)
·
([

1

aN
ar

]
+ 1

)2

.

Therefore, at the �th iteration we will have a2(�−1) ranges and sectors of side 1
a�−1N

inside each
section and using Lemma 3 we obtain:

�
(
H�·ar

)−MNa2(�−1) �N ∗(r)��
(
U�·ar+I·a2(�−1)

)
·
([

1

a�−1N
ar

]
+1

)2

, (8)

where

U� = SC · U�−1 + a2(�−1)B
1

a�−2N
= SC · U�−1 + B

a�

N

and

H� = SC · H�−1.

We can easily prove that

U� = (SC)�−1 · R + (SC)�−1B
a

N
+ (SC)�−2 · B

a2

N
+ (SC)�−3 · B

a3

N

+ · · · + SC · B
a�−1

N
+ B

a�

N

and

H� = (SC)�−1 · H1.

This holds only if the number � of the steps is such that 1
a�−1N

� 1
ar , so that the cubes we use do

not intersect. We choose � ∈ N such that r − � − 1�� < r − �, where � = log N
log a

− 1 > 0.
Since S · C is a non-negative irreducible matrix, Frobenius’ Theorem (see [7, pp. 50–66,10,

pp. 542–551]) implies that there is a “unique” strictly positive eigenvector of SC which corresponds
to an eigenvalue � = 	(SC) > 0. (Unique in the sense that an irreducible non-negative matrix
cannot have two linearly independent non-negative eigenvectors. Thus, any other strictly positive
eigenvector has to be a multiple of the first).

We choose the (corresponding to �) eigenvectors

Û = (û1, û2, . . . , ûNM) such that 0 ≺ Û ≺ H1, (9)

U∗ = (u∗
1, u

∗
2, . . . , u

∗
NM) such that U∗  U1 and U∗  1

N
R. (10)

Thus, from (8), we have

N ∗(r) � �
(
U� · ar + a2(�−1)I

)
·
([

1

a�−1N
ar

]
+ 1

)2

� �
(
U� · ar + a2�−2I

)
· (a + 1)2

(
as a� = N

a
and ��r − � − 1

)
,
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N ∗(r) � �

(
(SC)�−1Rar+(SC)�−1B

ar+1

N
+(SC)�−2B

ar+2

N
+ · · · + (SC)B

ar+�−1

N

+ B
ar+�

N
+ a2�−2I

)
· (a + 1)2 (11)

� �
(
(SC)�−1U∗ar + (SC)�−1U∗ar+1 + (SC)�−2U∗ar+2

+ · · · + (SC)U∗ar+�−1 + U∗ar+� + a2�−2I
)

· (a + 1)2(
as

1

N
B ≺ U∗ and R ≺ U∗

)

=
(
��−1�(U∗)ar + ��−1�(U∗)ar+1 + ��−2�(U∗)ar+2

+ · · · + ��(U∗)ar+�−1 + �(U∗)ar+� + a2�−2�(I)
)

· (a + 1)2

(as U∗is an eigenvector).

We set �∗ = �(U∗); thus since ��r − �, we have

N ∗(r) �
(
�r−�−1�∗ar + �r−�−1�∗ar+1 + �r−�−2�∗ar+2

+ · · · + ��∗a2r−�−1 + �∗a2r−� + a2r−2�−2NM
)

· (a + 1)2 . (12)

Assuming � > a, we have that

N ∗(r)��r−�−1ar�∗
⎛
⎝1 + ar−2�−2NM

�r−�−1 +
a
(

1 − (
a
�

)r−�
)

1 − a
�

⎞
⎠ · (a + 1)2 ,

where⎛
⎝1 + ar−2�−2NM

�r−�−1 +
a
(

1 − (
a
�

)r−�
)

1 − a
�

⎞
⎠ > 0.

For � > a we deduce that:
log N ∗(r)

r log a
� (r − � − 1) log �

r log a
+ r log a

r log a
+ log �∗

r log a

+
log

(
1 + ar−2�−2NM

�r−�−1 + a
(

1−( a
�

)r−�
)

1− a
�

)

r log a
+ 2 log (a + 1)

r log a
.

Therefore,

D(G) = lim sup
r→∞

log N ∗(r)
r log a

�1 + loga �. (13)

If ��a, then from (12) we have

N ∗(r) � (�r−�−1�∗ar + �r−�−1�∗ar+1 + �r−�−2�∗ar+2

+ · · · + ��∗a2r−�−1 + �∗a2r−� + a2r−2�−2NM) · (a + 1)2

� a2r−�−2�∗ (a + (r − �)a2 + NM
)

(a + 1)2 .
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Hence

log N ∗(r)
r log a

� (2r − � − 2) log a

r log a
+ log

(
�∗ (a + (r − �)a2 + NM

)
(a + 1)2

)
r log a

and D(A)�2. But, since A is a continuous surface, we conclude that D(A) = 2.
Proceeding similarly, from (8) we have, for � > a,

N ∗(r)��
(
H� · ar

)− MNa2�−2,

N ∗(r)��
(
(SC)�−1 · H1 · ar

)
− MNa2�−2. (14)

Hence,

N ∗(r) � �
(
(SC)�−1 · Û · ar

)
− MNa2�−2 (since H1  Û )

� �
(
��−1 · Û · ar

)
− MNa2�−2 (Û is an eigenvector)

= ��−1ar
NM∑
n=1

ûi − MNa2�−2

= ��−1ar �̂ − MNa2�−2

(
�̂ =

NM∑
n=1

ûi

)

� �r−�−2�̂ar − MNa2r−2�−2 (r − � − 1�� < r − �)

� ar�r−�−2
(

�̂ − MN2ar−2�−2

�r−�−2

)
.

Since � > a, there is a number r0 such that
(
�̂ − pN2ar−2�−2

�r−�−2

)
> 0, for r > r0. Thus,

log N ∗(r)
r log a

� r log a

r log a
+ (r − � − 2) log �

r log a
+

log
(
�̂ − MN2ar−2�−2

�r−�−2

)
r log a

for r > r0,

which means that D(A)�1 + loga �. So we have that D(A)�1 + loga �. This completes the
proof. �

Remark 1. Let the RBIFS and matrix S be as defined above. Suppose that the RBIFSs attractor A
is the graph of a continuous function and the connection matrix C is a non-negative matrix which
has a strictly positive eigenvector X. Then the box-counting dimension is given by

D(A) =
{

1 + loga � if � > a,

2 otherwise,

where � = 	(SC).

If there exists a strictly positive eigenvector, it corresponds to the spectral radius of the matrix
which is now strictly positive too (see [7,10, p. 551]). Thus, the strictly positive eigenvector X of
SC corresponds to the eigenvalue � = 	(SC) > 0 (any other strictly positive eigenvector will also
correspond to �). We can choose Û and U∗ in relations (9) and (10) accordingly and the proof
follows that of the theorem. Conditions for a non-negative matrix to have a positive eigenvector
are given in [7].
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Definition 5. Let B �0, B �= 0 be a square matrix (N ×N ). Also, let x ∈ RN be such that x�0.
We define

�1(x) = max{	 : Bx�	x}�0 and �2(x) = min{ : Bx�x}.

We also define

�1(B) = min{�1(x) : x�0}�0 and �2(B) = max{�2(x) : x�0}.

Remark 2. Let the RBIFS be as defined in Theorem 1, but now suppose that C is a reducible
matrix and the attractor G of the RBIFS is the graph of a continuous function. Then

if �1(SC) > a, then 1 + loga �1(SC)�D(G)�D(G)�1 + loga �2(SC),
if �2(SC)�a, then D(G) = 2.

Proof. The proof is similar to the one given for Theorem 1. Suppose that �1(SC) > a (then
�2(SC)��1(SC) > a). From (11) we have

N ∗(r) � �

(
(SC)�−1Rar + (SC)�−1B

ar+1

N
+ (SC)�−2B

ar+2

N
+ · · · + (SC)B

ar+�−1

N

+B
ar+�

N
+ a2�−2I

)
· (a + 1)2

= �(�2(SC)�−1Rar + �2(SC)�−1Bar+1 + �2(SC)�−2Bar+2

+ · · · + �2(SC)Bar+�−1 + Bar+� + a2�−2I) · (a + 1)2 .

Similarly, we obtain D(G)�1 + loga �2(G).
From (8) we have

N ∗(r) � �
(
(SC)�−1 · H1 · ar

)
− MNa2�−2

� �
(
(�1(SC))�−1 · H1 · ar

)
− MNa2�−2.

Similarly, we obtain 1 + loga �1(SC)�D(G). If �2(SC)�a, we can easily deduce that
D(G) = D(G) = D(G) = 2. �

3.1. Special cases

Case I: The bivariate FIS. The bivariate FIS (see [6]) is a RBFIS with connection matrix

Cij = 1, i = 1, . . . , N, j = 1, . . . , M,

� = 1
N

, � = 1 and thus a = N . In this case, C is an irreducible non-negative matrix and the
spectral radius � = 	(SC) is given by

� =
N∑

i=1

M∑
j=1

|sij |.
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Since it has been proved [6] that the attractor of this IFS is a continuous function, from the above
theorem we deduce that the box-counting dimension of the attractor A of the bivariate FIS is
given by

D(A) =
⎧⎨
⎩ 1 + logN

N∑
i=1

M∑
j=1

|sij | if
N∑

i=1

M∑
j=1

|sij | > N,

2 otherwise.

Case II: SC is a multiple of a stochastic matrix. Let the RBIFS be as defined in Theorem 1, but
now C be reducible. In order for the matrix SC to be a multiple of a stochastic matrix (i.e. the sum
of the elements of each row be a constant �) we need:

|sij | = �

a2 for i = 1, . . . , N, j = 1, . . . , M.

In this case, the spectral radius of SC is � = 	(SC) = � (see [7, p. 84]) and a corresponding eigen-
vector is (1, 1, . . . , 1)T. If the attractor A of this BRIFS is a continuous function (see Proposition 1),
then the box-counting dimension of A is

D(A) =
{

1 + loga � if � > a,

2 otherwise.

4. Construction of recurrent bivariate fractal interpolation surfaces

We stated in Theorem 1 that if the attractor of a RFIS is the graph of a continuous function, we
can compute its box-counting dimension. Some sufficient assumptions will be given so that the
above can be fulfilled.

Proposition 1. With the same notation as in Section 2, assume that for every interval Jkl, k =
1, 2, . . . , K, l = 1, 2, . . . , L, the points of each of the sets

{(x(k−1)a = x̂k−1, y(l−1)a+
, z(k−1)a,(l−1)a+
); 
 = 0, 1, 2, . . . , a},
{(xka = x̂k, y(l−1)a+
, zka,(l−1)a+
); 
 = 0, 1, 2, . . . , a},
{(x(k−1)a+
, y(l−1)a = yl−1, z(k−1)a+
,(l−1)a); 
 = 0, 1, 2, . . . , a},
{(x(k−1)a+
, yla = yl, z(k−1)a+
,la); 
 = 0, 1, 2, . . . , a}

are collinear. Then there exists a continuous function f : [0, 1] × [0, p] → R that interpo-
lates the given data P = {(xi, yj , zij ): i = 1, 2, . . . , N, j = 1, 2, . . . , M} and its graph
{(x, y, f (x, y)):(x, y) ∈ [0, 1] × [0, p]} is the attractor A of the RBIFS.

In [6], Dalla proved that the attractor of a bivariate IFS (BIFS) on [�, �] × [�, �] × R is the
graph of a continuous function that interpolates the data, if the interpolation points are such that
the points of each one of the sets

{(x0, y�, z0,�) : � = 0, 1, 2, . . . , M},
{(xN , y�, zN,�) : � = 0, 1, 2, . . . , M},
{(x
, y0, z
,0) : 
 = 0, 1, 2, . . . , N},
{(x
, yM, z
,M) : 
 = 0, 1, 2, . . . , N}

are collinear. The proof of the above proposition is similar.
More generally, we have the following. (The proof is similar to the one presented in [6].)
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Proposition 2. Let the RBIFS be as defined above. Consider the interval Jkl, k = 1, . . . , K,

l = 1, . . . , L, and let, for � ∈ N,

L�
kl[
], 
 = 1, . . . , a�+1 − 1,

denote the vertical distance of each one of the points computed
in the step � of the construction, with x = x̂k−1 and y ∈ [ŷl−1, ŷl],
from the line defined by the points
(x(k−1)a, y(l−1)a, z(k−1)a, (l−1)a) and (x(k−1)a, yla, z(k−1)a, la),

R�
kl[
], 
 = 1, . . . , a�+1 − 1,

denote the vertical distance of each one of the points computed
in the step � of the construction, with x = x̂k and y ∈ [ŷl−1, ŷl],
from the line defined by the points
(xka, y(l−1)a, zka, (l−1)a) and (xka, yla, zka, la),

D�
kl[
], 
 = 1, . . . , a�+1 − 1,

denote the vertical distance of each one of the points computed
in the step � of the construction with y = ŷl−1 and x ∈ [x̂k−1, x̂k],
from the line defined by the points
(x(k−1)a, y(l−1)a, z(k−1)a, (l−1)a) and (xka, y(l−1)a, zka, (l−1)a),

U�
kl[
], 
 = 1, . . . , a�+1 − 1,

denote the vertical distance of each one of the points computed
in the step � of the construction with y = ŷl and x ∈ [x̂k−1, x̂k],
from the line defined by the points
(x(k−1)a, yla, z(k−1)a, la) and (xka, yla, zka, la).

Each one of these vertical distances is taken as positive if the corresponding interpolation point
is above the corresponding line; otherwise it is taken as negative. If � = 0, then L0

kl[
] denotes
the vertical distance of the interpolation points from the straight line defined above, etc. If we can
select the vertical scaling factors so that

si,j · R�
J(i,j)[
] = si+1,j · L�

J(i+1,j)[
],
si,j · U�

J(i,j)[
] = si,j+1 · D�
J(i,j+1)[
],

for i, j, 
 ∈ N : i = 1, . . . , N − 1, j = 1, . . . , M − 1, 
 = 1, . . . , a�+1 − 1, � ∈ N,

then there exists a continuous function f : [0, 1] × [0, p] → R that interpolates the given data
� = {(xi, yj , zij ) : i = 1, 2, . . . , N; j = 1, 2, . . . , M} and its graph {(x, y, f (x, y)) : (x, y) ∈
[0, 1] × [0, p]} = A.

Of course in general, it is extremely difficult to find a RBIFS satisfying the above conditions.
A special case is described below.

Corollary 1. Let the RBIFS be as defined above, and assume that

R0
J(i,j)[
] = L0

J(i,j)[
],
U0

J(i,j)[
] = D0
J(i,j)[
],

for 
 = 1, 2, . . . , a−1 and sij = s < 1, for i = 1, 2, . . . , N , j = 1, 2, . . . , M . Then the attractor
of the above RBIFS is the graph of a continuous function that interpolates the given data �.
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Fig. 1. Two fractal interpolation surfaces constructed according to the conditions described in Proposition 1. The first
(a) (where N = M = 8, K = L = 4) has box-counting dimension 2.2769 and the second (b) (where N = M = 4,
K = L = 2) 2.3325.
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Fig. 2. The RIFS (defined on [0, 256] × [0, 256] × R) satisfies the conditions in Corollary 1. Hence its attrac-
tor is the graph of a continuous function. Here M = N = 6, K = L = 2, a = 3. The connection vec-
tor is Cv = (1, 3, 4, 1, 2, 2, 1, 3, 3, 4, 1, 1, 2, 3, 1, 4, 3, 1, 2, 3, 4, 1, 4, 2, 2, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2). The interpola-
tion points are shown in Table 1 and s = 0.38. The matrix SC is irreducible and the box-counting dimension of the
attractor is 2.3319.

4.1. Examples

In Figs. 1 and 2, the attractors of some RBIFSs on R3 are shown. The chosen RBIFSs satisfy
either Proposition 1 or Corollary 1.

5. Approximation of natural surfaces using RBIFSs

One may use RBIFSs to approximate any discrete natural surface, as complicated as may be,
using the methodology described below. This methodology is based on ideas similar to the ones
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(xk-1, y1-1+r)

(xk, y1-1+r)

straight line between end points

vertical distance∧ ∧

∧ ∧

Fig. 3. Computation of the contractivity factors.

presented by Mazel and Hayes in [15], where affine FIFs where used to model single-valued
discrete sequences.

Proposition 2 gives the general conditions that the interpolation points and the contractivity
factors must satisfy so that the attractor of the corresponding RIFS be a continuous function. If the
interpolation points are collinear on the boundary of each interval Jkl , then any selection of the
contractivity factors sij will be sufficient (Proposition 1). On the other hand, if the interpolation
points are not collinear on the boundary of each interval Jkl , then it is almost impossible to
find contractivity factors that satisfy the conditions of Proposition 2 for an arbitrary selection of
interpolation points. However, for � = 0 it is relatively easy to find contractivity factors such that

si,j · R0
J(i,j)[
] = si+1,j · L0

J(i+1,j)[
],
si,j · U0

J(i,j)[
] = si,j+1 · D0
J(i,j+1)[
],

for i = 1, . . . , N − 1, j = 1, . . . , M − 1, 
 = 1, . . . , a − 1, or

|si,j · R0
J(i,j)[
] − si+1,j · L0

J(i+1,j)[
]| < ε, (15)

|si,j · U0
J(i,j)[
] − si,j+1 · D0

J(i,j+1)[
]| < ε, (16)

for ε > 0 (relatively small). In this case, the attractor of the corresponding RIFS is not graph
of a continuous surface. Instead, the attractor is a compact subset of [0, 1] × [0, p] × R that
approximates a continuous surface.

Now, consider the data set D = {(n, m, f (n, m)) : n = 0, 1, . . . , N∗; m = 0, 1, . . . , M∗}
representing points of an arbitrary surface. Our goal is to choose interpolation points and con-
tractivity factors such that the attractor of the corresponding RIFS approximates the surface. We
choose �, � ∈ N a priori and form the sections Iij and the intervals Jkl , so that each section
contains (� + 1) × (� + 1) points of D and each interval (� + 1) × (� + 1) points of D. For
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Fig. 4. Any grey-scale image can be viewed as a (discrete) surface. In (a), the test image of Lena is shown. Each attractor
of the RIFSs that approximates the “Lena” surface (for different values of �,� and error tolerance) is shown in (b)–(d).

each section Iij we seek the best-mapped interval Jkl with respect to a metric h, using bivariate
mappings. We compute the contractivity factor of that mapping as follows.

Recall that bivariate mappings have the property to map vertical lines (parallel to zź) to vertical
lines scaled by the vertical scaling factor s. Let |�y

r |, r = 0, 1, . . . ,�, be the mean absolute vertical
distance between any value of f (x, y) lying inside the interval Jkl (where x = x̂k−1, x̂k−1 +
1, . . . , x̂k−1+� = x̂k , y = ŷl−1+r) and the straight line between the vertices (x̂k−1, y) and (x̂k, y)

(see Fig. 3). The sign of �y
r is taken as positive, if f (x, y) is above the straight line and negative

otherwise. Similarly, let |�x
r |, r = 0, 1, . . . ,�, be the mean absolute vertical distance between

any function value f (x, y) (where y = ŷl−1, ŷl−1 +1, . . . , ŷl−1 +� = ŷl , x = x̂k−1 + r) and the
straight line between the vertices (x, ŷl−1) and (x, ŷl). Let � = mean{�x

r , �
y
r , r = 0, 1, . . . ,�}.
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Table 1
The interpolation points used for the RIFS shown in Fig. 2

�

y x

0 256
6 2 256

6 128 4 256
6 5 256

6 256

0 100 115 090 100 115 090 100
256

6 115 122 110 115 090 110 115

2 256
6 090 110 080 090 110 120 090

128 100 115 090 100 115 090 100

4 256
6 115 090 100 115 090 100 115

5 256
6 090 110 080 090 125 110 090

256 100 115 090 100 115 090 100

We compute �∗ similarly by using the values of the function lying inside Iij . Then, the contractivity
factor is given by the ratio �∗/�.

Since the contractivity factor has been chosen, the remaining parameters of the bivariate map
w are computed by Eqs. (5) and the set w({(x, y, f (x, y)) : (x, y) ∈ Jkl} is formed. Then we
compute the distance between the sets {(x, y, f (x, y)) : (x, y) ∈ Ii,j } and w({(x, y, f (x, y)) :
(x, y) ∈ Jkl} and repeat the procedure for every interval. If the contractivity factor that has been
computed does not satisfy conditions (15)–(16) or is greater than 1, we remove the correspond-
ing interval from the search pool. Finally, we choose the interval that minimises the previously
mentioned distance. If this distance, however, is greater than an error tolerance value (chosen a
priori) we split the section to four subsections (adding new interpolation points) and repeat the
procedure for each new subsection.

The collage theorem for RIFSs (see [3]) ensures that the attractor of the emerging RIFS will
approximate the original surface f. The methodology is described in detail in [4], where it is
successfully used to model and compress grey-scale images (see Fig. 4). The compression is
achieved by storing only the map parameters of the RIFS (interpolation points, contractivity
factors and connection vector) instead of all the pixel values (i.e. the set D) of the image. The
examination of the conditions (15)–(16) for each selected interval Jkl and corresponding con-
tractivity factor significantly improves the speed of the procedure, as a lot of the intervals are
removed from the search pool. In addition, the use of bivariate mappings instead of affine ones
improves the quality of the reconstructed surface. In [4], the proposed fractal interpolation ap-
proach is compared to the previously presented fractal methods and found to give more satisfactory
results.
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